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INTRODUCTION 

This scheme of work is based upon a five-term model over one year for A level Further Mathematics 

students and it is to be delivered after completing A level Mathematics (consecutive delivery model). It 

can be used directly as a scheme of work for the A level Further Mathematics specification (9FM0).  

 

The scheme of work is broken up into units and sub-units, so that there is greater flexibility for moving 

topics around to meet planning needs. 

Each unit contains: 

● contents, referenced back to the specification (A level Further Mathematics Specification) 

● prior knowledge (references to A level Mathematics Specification and SoW) 

● keywords 

Each sub-unit contains: 

● recommended teaching time, though of course this is adaptable according to individual teaching 

needs 

● objectives for students at the end of the sub-unit 

● teaching points 

● opportunities for problem-solving/modelling etc. 

● common misconceptions/examiner report quotes (from legacy Specifications) 

● notes 

 

AS content is indicated in this document using bold black font in the overview, specification 

references and objectives 

 

Teachers should be aware that the estimated teaching hours are approximate and should be used as a 

guideline only.  

 

Our free support for AS and A level Further Mathematics specifications can be found on the Edexcel 

mathematics website (http://qualifications.pearson.com/en/home.html) and on the Emporium 

(www.edexcelmaths.com). 

 

Overlap, links and dependencies with other Units’ content is clearly indicated throughout.  

  

http://qualifications.pearson.com/en/home.html
http://www.edexcelmaths.com/
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Decision Mathematics 1 

 

  

 

  

Unit  Title Estimated hours 

1  Algorithms and graph theory  

 a Introduction to algorithms 4 

 b Sorting algorithms 6 

 c Introduction to graph theory 2 

 d Planarity algorithm 5 

2  Algorithms on graphs I  

 a Minimum connectors (spanning trees) 4 

 b Dijkstra’s algorithm 4 

 c Floyd’s algorithm 6 

3  Algorithms on graphs II  

 a Route inspection problem 5 

 b Travelling salesman problem 9 

4  Linear programming  

 a Formulation of problems 2/3 

 b Graphical solutions 6 

 c Simplex algorithm 7 

 d Big-M and two-stage Simplex 7 

5  Critical path analysis  

 a Activity networks; precedence tables 5 

 b Critical path algorithm; earliest and latest event times 4 

 c Total float; Gantt charts 3 

 d Resource histograms 5 

 e Scheduling 5 

 
  

45 (AS) 

90 (A Level) 
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Unit 1: Algorithms and Graph Theory 

Return to Overview 

SPECIFICATION REFERENCES 

1.1 The general ideas of algorithms and the implementation of an algorithm given by a flow chart 

or text. 

1.2 Bin packing, bubble sort and quick sort. 

1.3 Use of the order of the nodes to determine whether a graph is Eulerian, semi-Eulerian or 

neither. 

1.4 The planarity algorithm for planar graphs. 

PRIOR KNOWLEDGE 

GCSE (9-1) in Mathematics at Higher Tier 

R13 Construct and interpret equations that describe direct and indirect proportion 

KEYWORDS 

Algorithm, flow  chart, size, order, efficiency, loops, bubble sort, iteration, quick sort, pivot, mid-point, bin 

packing, first-fit, first-fit decreasing, optimal solutions, vertices, nodes, edges, arcs, graph, network, path, 

cycle, Hamiltonian cycle, Eulerian graph, semi-Eulerian graph, Eulerian cycle, subgraph, weighted graph, 

connected graph, simple graph, complete graph, degree, valency, digraph, tree, spanning tree, k notation, 

isomorphic, planar. 
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1a. Introduction to algorithms (1.1) 
Teaching time 

4 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 understand what an algorithm is; 

 be able to trace an algorithm in the form of a flow chart; 

 be able to trace an algorithm given as instructions written in text; 

 know how to determine the output of an algorithm and how it links to the input; 

 be able to determine the order of a given algorithm and standard network problems. 

TEACHING POINTS 

A useful starting point is to ask students to write their own algorithms for processes they are familiar with, 

e.g. long multiplication or column addition. Conclude that the instructions for each step need to be 

unambiguous.  

Presentation should be the key focus of tracing an algorithm as students must show all the values they find 

and the order in which they find them. A trace table is the best method of doing this with each line in the 

algorithm on a new line in the table. 

Students will need to practise interpreting flow diagrams and pseudo-code as well as interpreting the 

outcome of an algorithm using mathematical language.  

Students should be familiar with the order and efficiency of a given algorithm, and use proportionality 

formulae to calculate the run-time of an algorithm. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING 

Use rich tasks to generate outcomes such as Fibonacci numbers and Russian peasant multiplication. 

Explore the source code of programs the students are familiar with, e.g. apps or LOGO. 

 



 

Pearson Edexcel Level 3 Advanced GCE in Further Mathematics (9FM0) 

 Decision Mathematics 1 – Scheme of Work  

© Pearson Education Limited 2017 

  

 

COMMON MISCONCEPTIONS/EXAMINER REPORT QUOTES 

Students sometimes struggle to trace algorithms using the methodical, accurate and diligent approach that 

is necessary and may therefore make mistakes following the instructions. 

It is important to emphasise the presentation as students may try to compress their entries – so that they 

were no longer ‘in line’; they may also repeat entries or write more than one entry in each box; this makes 

it difficult for examiners to determine the stage at which students change the entries. 

Students should also be aware of the importance of following directions relating to accuracy and give their 

answers to the required number of decimal places or significant figures. 

NOTES 

The hardest part of this topic for many students is identifying how the output relates to the input(s). Try to 

use many algorithms (as flow charts and text) that results in trace tables yielding different types of outputs 

(multiples, products, quotient and remainders, prime factors, solutions for equations etc.) 
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1b. Sorting algorithms (1.2) 
Teaching time 

6 hours 

OBJECTIVES  

By the end of the sub-unit, students should: 

 know how to apply a bubble sort algorithm to a list of numbers or words; 

 know how to apply the quick sort algorithm to a list of numbers or words, clearly identifying 

the pivots used for each pass; 

 be able to identify the number of comparisons and swaps used in a given pass; 

 be able to identify size, efficiency and order of an algorithm and use them to make 

predictions; 

 know how to solve bin packing problems using full bin, first fit, and first fit decreasing 

algorithms, and understand their strengths and weaknesses. 

TEACHING POINTS 

Bubble sort: 

Notation is key, with marks given for the part-sorted list at the end of each pass, and students should be 

encouraged to write “end of 1st pass” etc. as part of their notation. 

Students should be aware that just because the numbers/ letters are in the required order, the algorithm is 

not necessarily complete. All comparisons must be made in order to do this. The final pass should yield no 

exchanges, but still has to be carried out.  

For a list of n numbers the list will always be sorted after the (n – 1)th pass, although it may be sorted 

sooner. The maximum number of comparisons/exchanges will be 
𝑛(𝑛−1)

2
 . 

Quick sort: 

This is a more efficient method of sorting that generally requires fewer comparisons. When using the quick 

sort algorithm, the pivot should be chosen as the middle item of the list. Students must be able to find the 

midpoint of a list of numbers.  

In a list containing N items the ‘middle’ item has position [
2

1
(N + 1)] if N is odd [

2

1
(N + 2)] if N is even, so 

that if N = 9, the middle item is the 5th and if N = 6 it is the 4th. 

It is worth checking, at the end of a quick sort, that no numbers have been lost in the process.  

Bin packing: 

Students need to know how to find full-bin combinations, and how to carry out the first-fit and first-fit 

decreasing algorithms. Bin packing is often examined after a list has been sorted using either the bubble or 

quick sort algorithms.  

Students must be able to find the lower bound of the number of bins needed by rounding up, and justify if 

their solutions are optimal. They should be aware that there could be more than one solution to the full-bin 

combination, and that the first-fit algorithms are heuristic algorithms. 

Order: 

The order of an algorithm is a measure of the efficiency as a function of the size. The size is a measure of 

the complexity and is usually the number of items in the list. The efficiency is a measure of how long the 

algorithm will take (its run-time). It is proportional to the number of operations.  

Demonstrate sorting x numbers using the bubble sort that the size is n, the number of comparisons would 

be 
1

2
(𝑛 − 1)𝑛 =  

1

2
𝑛2 −  

1

2
𝑛. So the efficiency would be proportional to 𝑛2. 
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We could write 𝐸 ∝  𝑛2 and use 𝐸 = 𝑘𝑛2 for given values for n. In this case the order would be quadratic, 

𝑛2. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

In bin packing problems, consider problems where the conditions are changed – what effect will this have 

on the number of bins? How much waste will there be? 

There are often cost implications to the questions.  

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Bubble Sort: 

Some students do not seem to be aware that a bubble sort should be performed consistently in one direction. 

Misreading their own writing and changing one number into another is a fairly common way of losing 

marks in examinations. Some students omitted the final pass.  

When asked to give the state of the list after each pass, some students will show each exchange and 

comparison, which wastes time and may cause time difficulties later on in the paper. 

Some students do not understand the difference between an exchange and a pass in a bubble sort. 

Quick Sort: 

In an exam question, some students only chose one pivot per iteration, rather than choosing one pivot per 

sub-list, and some used lengthy methods of presentation that isolated each sub-list in turn, making it difficult 

to see if they were choosing more than one pivot per iteration. You should advise students not to show 

unnecessary detail and simply indicate the pivots selected, using one line of working per iteration.  

Some students do not select a pivot where the sub-list was of order two, with the two items being in the 

correct order, and some do not consistently pick ‘middle left’ or ‘middle right’ when the sub-list was of 

even order. You should remind students that when the items are being transferred to the next line, the order 

of the items should be preserved, so if item Y is to the left of item X in the current line, neither of them 

being a pivot, then Y should be to the left of X in the next line.  

Some students cannot explain the need for a final pass when all numbers are in order and presume the 

algorithm is complete. 

Bin Packing: 

Most students can successfully complete a bin packing, but some struggle to show that they have used a 

minimum number of bins; the lower bound would help here. It has been known for students to create a first-

fit increasing algorithm; students should appreciate the inefficiency of this method and ensure they apply 

first-fit either to an original list from left to right, or on a decreasing list. 

NOTES 

Students are expected to know the meaning of the order of an algorithm. Students will be expected to 

determine the order of a given algorithm and the order of standard network problems. 
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1c. Introduction to graph theory (1.3) 
Teaching time 

2 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 know the meaning of the vocabulary used in graph theory e.g. degree of a vertex, isomorphic 

graphs, walks, paths and cycles;  

 be familiar with different types of graph e.g. complete, planar, isomorphic, simple, connected;  

 understand graphs represented in matrix form; 

 be familiar with k notation; 

 know the definition of a tree; 

 be able to determine if a graph is Eulerian, semi-Eulerian or neither, and find Eulerian cycles. 

TEACHING POINTS 

Students must be able to identify the features of graphs and draw graphs given a set of properties. 

Use collective memory tasks to introduce students to different types of graphs, and use card matching 

activities to classify them.  

Most types of graph are the basis for a different topic in networks: 

 spanning trees are found using Prim’s and Kruskal’s algorithms 

 the route inspection problem is linked to Eulerian and semi-Eulerian graphs  

 Hamiltonian cycles are explored in the planarity algorithm. 

Use k notation for complete graphs. Use the formula  

 Number of edges in Kn = 
𝑛(𝑛−1)

2
 

Define Eulerian graphs – the degree/order of all the nodes is even and it is traversable. The complete graph 

Kn is Eulerian if n is odd.  

Present the ‘Bridges of Königsberg’ problem.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Look at graphs the students are familiar with – tube maps, rail networks, family trees, hierarchy of staff in 

your school, floor plans – and relate these to the features taught in this section.  

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Students often find questions on graph theory very difficult and rarely achieve full marks in exam questions. 

Difficulties include finding both the minimum and maximum number of edges possible in a connected 

graph with n vertices; e.g. giving n instead of n – 1 as the minimum number of edges. 

Students may give incomplete or inaccurate descriptions when talking about Eulerian graphs, for example 

talking about ‘odd vertices’ or an ‘odd number of vertices’. 

NOTES 

Students will be expected to be familiar with the following types of graphs: complete (including k notation), 

planar and isomorphic.  
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1d. Planarity algorithm (1.4) 
Teaching Time 

5 hours 

OBJECTIVES  

By the end of the sub-unit, students should: 

 be able to apply the planarity algorithm for planar graphs; 

 be able to determine if a graph contains a Hamiltonian cycle. 

TEACHING POINTS 

Revisit the teaching on planar graphs from the previous section. Discuss some ‘real-world’ examples like 

uninsulated wires on circuit boards.  

The planarity algorithm determines if a graph is planar or not, but only works on graphs that contain a 

Hamiltonian cycle. 

Define Hamiltonian cycles, ensuring that students are aware that not all edges have to be included. If there 

are n nodes there will be (n – 1)! Hamiltonian cycles.  

The final graph drawn after completing the planarity algorithm will be the planar representation of the 

original graph.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Draw different versions of the same graph, e.g. for K4 planar graph, left, a plane drawing, centre, and a 

straight line drawing, right. 

 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Most students understand what is meant by the word planar, but some do not use the planarity algorithm 

and simply draw graphs in planar form. Those who sought a Hamiltonian cycle and drew this as a polygon 

separating two sets of arcs were usually successful, although a few forgot to draw double arcs. 

When answering one particular exam question, a surprisingly large number of students did not make any 

connection between the Hamiltonian cycle and the planar graph and tried to draw the graph without first 

drawing the cycle as a boundary between the two sets of arcs. 

NOTES 

Students will be expected to be familiar with the term ‘Hamiltonian cycle’. 
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Unit 2: Algorithms on Graphs I 

Return to Overview 

SPECIFICATION REFERENCES 

2.1  The minimum spanning tree (minimum connector) problem. Prim’s and Kruskal’s (greedy) 

algorithm. 

2.2 Dijkstra’s and Floyd’s algorithm for finding the shortest path. 

PRIOR KNOWLEDGE 

Covered so far 

 Introduction to graph theory (Unit 1c) 

KEYWORDS 

Minimum spanning tree, Kruskal’s algorithm, Prim’s algorithm, network, distance matrix, Dijkstra’s 

algorithm, working values, final values, directed network, source vertex, destination vertex, distance table, 

sequence table, Floyd’s algorithm. 
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2a. Minimum connectors (spanning trees) (2.1) 
Teaching time 

 4 hours 

OBJECTIVES  

By the end of the sub-unit, students should: 

 understand the meaning of a minimum spanning tree; 

 be able to apply Kruskal’s algorithm to a network to find the minimum spanning tree; 

 be able to apply Prims algorithm to a network to find the minimum spanning tree; 

 be able to apply Prim’s algorithm to a distance matrix to find the minimum spanning tree. 

TEACHING POINTS 

Make links to spanning trees in graph theory (arc, weight, tree, cycle, vertices) 

Students are regularly asked to identify the number of edges in a spanning tree with a given number of 

vertices. In a network of n vertices a spanning tree will always have (n – 1) arcs.  

Students must show their working out clearly to make it clear they have used the stated algorithm. The best 

method is to write the edges used in order (make sure students are writing edges e.g. AB not just vertices 

e.g. A) with their decision about rejecting or adding them where appropriate.  

Students should be aware of the similarities and differences between the two algorithms and be aware they 

find the same answer.  

Students should be given problems where it is possible to find more than one spanning tree. 

They must be able to show the use of Prim’s algorithm from a matrix, presenting the final labelled table, 

plus a list of arcs in order, to make their method clear.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING 

Ask questions such as the following: 

What does the full network look like? 

Would the minimum spanning tree remain the same if this edge was added? 

Can you draw a different spanning tree? 

Can you find a shorter tree? 

What strategy did you use? 

Can you write your strategy in a formal way (as an algorithm)? 

What are the similarities and differences? 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Questions which require Prim’s algorithm on a table are sometimes poorly answered. Many students do not 

present their working on the table and of those that do, they often do not show the order of selection of 

edges. Students should be encouraged to record the edges as they add them to the tree, rather than after they 

have completed the algorithm, to avoid making mistakes. 

It should be noted that whilst a question on Kruskal often follows one on sorting a list in to ascending order, 

the sort is not part of Kruskal’s algorithm itself and so is not necessary unless asked for in a separate part 

of the question. 

Students often try to merge the methods of Prim and Kruskal, for example by incorrectly showing rejections 

when using Prim. 
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Students should be warned against the similarities between Prim’s algorithm and the nearest neighbour 

algorithm (see 3b), and ensure that they do not confuse the two. 

NOTES 

Students will gain no credit for using the incorrect algorithm when finding the minimum spanning tree. 

Matrix representation for Prim’s algorithm is expected. Drawing a network from a given matrix and writing 

down the matrix associated with a network may be required. 
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2b. Dijkstra’s algorithm (2.2) 
Teaching time 

4 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to apply Dijkstra’s algorithm to find the shortest path between two vertices in a 

network; 

 be able to trace back through a network to be able to find the route corresponding to the 

shortest path; 

 be able to consider modifications to an original shortest path problem, for example by dealing 

with multiple start points or a different end point.  

TEACHING POINTS 

Dijkstra is pronounced Dike-stra. 

The boxes will be drawn for the students to complete in the exam. Students’ method should be clear from 

their working and they need to be aware that examiners check the order in which the numbers appear in the 

list of working values. 

Include networks with directed arcs in your examples.  

Some students find this algorithm difficult when they can already see the correct answer; they must continue 

to follow the algorithm as missing out one path will lose multiple marks in exam questions. 

They must be able to explain how they found their quickest route by back tracking. They can do this using 

a series of label calculations.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Exam questions regularly ask students to find solutions to similar problems where new information is given 

which would update the network. This could include dealing with multiple starting points.  

They should be exposed to problems where the shortest route is not unique. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

As highlighted above, an examiner reports: “Candidates had to apply Dijkstra’s algorithm very carefully to 

obtain full marks in part and many were able to do this. There are still a few candidates who treat this as a 

sort of ‘minimising critical path’ forward pass however. The examiners use the working values and the 

order in which they occur in the box as the main confirmation that Dijkstra’s algorithm has been correctly 

applied, thus it is important that they are legible and that candidates do write them in order.” 

When describing how they found their shortest route, students that give a numerical demonstration gain full 

marks most easily, with those who give a general explanation often missing out part of the process. 

NOTES 

Some students confuse Dijkstra and activity networks. 
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2c. Floyd’s algorithm (2.2) 
Teaching time 

6 hours 

OBJECTIVES                                                                                                                                                                            

By the end of the sub-unit, students should: 

 be able to find all the shortest paths between all the pairs of vertices using Floyd’s algorithm. 

TEACHING POINTS 

The method successively modifies two distinct matrices; a distance matrix (showing weights of each edge) 

and a route matrix. 

The distance matrix will be symmetrical unless it represents a digraph. An iteration must be carried out for 

each vertex, even if there are no changes on an iteration – the algorithm is not complete until you have done 

so. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Students must be able to explain what the algorithm has achieved and be able to show how to find the 

quickest time and/or route between any two vertices. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

It is not usual for a complete application of Floyd to be set – usually just one or two iterations are tested. 

For a complete application, the network must be small. 

NOTES 

When applying Floyd’s algorithm, unless directed otherwise, students will be expected to complete the first 

iteration on the first row of the corresponding distance and route problems, the second iteration on the 

second row and so on until the algorithm is complete. 
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Unit 3: Algorithms on Graphs II 

Return to Overview 

SPECIFICATION REFERENCES 

3.1 Algorithm for finding the shortest route around a network, travelling along every edge at least 

once and ending at the start vertex (The Route Inspection Algorithm) 

3.2 The practical and classical Travelling Salesman problems. The classical problem for complete graphs 

satisfying the triangle inequality. 

Determination of upper and lower bounds using minimum spanning tree methods. 

The nearest neighbour algorithm. 

PRIOR KNOWLEDGE 

Covered so far 

 Introduction to graph theory (Unit 1c)  

 Dijkstra’s algorithm (Unit 2b) 

 Eulerian and semi-Eulerian graphs (for the Route Inspection Problem) (Unit 1c) 

 Tours and Hamiltonian cycles (for the Travelling Salesman problem) (Unit 1d) 

KEYWORDS 

Traversable, odd valency, Eulerian, Semi-Eulerian, minimum weight, upper bound, lower bound, nearest 

neighbour algorithm, complete network, triangle inequality, walk, tour.  
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3a. Route inspection problem (3.1) 
Teaching time 

5 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to determine whether a graph is traversable; 

 be able to apply an algorithm to solve the route inspection problem; 

 find a route by inspection; 

 understand the importance of the order of vertices of the graph in finding a route. 

TEACHING POINTS 

This is a relatively straightforward algorithm to complete. Recap earlier teaching on Eulerian graphs and 

order of vertices. Use a selection of graphs to demonstrate if a graph is traversable and list the condition 

that this requires. Revisit the Bridges of Königsberg problem.  

In an exam, students are usually given the sum of the values of the edges in the network. (Though apparently 

some students find the need to recalculate this leading to incorrect answers!) 

Students must clearly state the odd vertices and the minimum route between each pair. They must be aware 

that they need to check all possible routes between the two vertices to find the minimum route not just the 

one which passes through the least number of vertices. The direct route may not be the shortest route. 

They are not usually asked to find a particular route but should be aware of the number of times a given 

vertex will appear in the optimal route. It should be emphasized that this is the degree of the vertex ÷ 2, 

unless it is also part of a repeated route. 

The shortest route can be found by inspection in the examination – if Dijkstra’s algorithm is required it will 

be explicitly asked for. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Euler’s hand-shaking lemma.  

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

While most students show the correct three distinct pairings of the correct four odd nodes many candidates 

do not show the total for each pairing. These totals need to be given as evidence that the correct arcs, which 

need to be traversed twice, have been chosen. 

Some students in an exam did not realise that ‘the number of visits’ = ‘degree of vertex’ ÷ 2. They resorted 

to finding a detailed route, with varying degrees of success, and then counting each occurrence of a vertex. 

Modified situations in the Chinese postman problems are often not handled well so students should spend 

time studying semi-Eulerian situations. 

NOTES 

This is also known as the ‘Chinese postman’ problem. It was first studied by the Chinese mathematician 

Mei-Ko Kwan in 1962.  

Students will be expected to use inspection to consider all possible pairings of odd nodes.  

If the network has more than four odd nodes then additional information will be provided to restrict the 

number of pairings that will need to be considered, and this will be for A Level only, not AS.  



 

Pearson Edexcel Level 3 Advanced GCE in Further Mathematics (9FM0) 

 Decision Mathematics 1 – Scheme of Work  

© Pearson Education Limited 2017 

  

3b. Travelling salesman problem (3.2) 
Teaching time 

9 hours 

OBJECTIVES  

By the end of the sub-unit, students should: 

 understand the travelling salesman problem and that there is no simple algorithm to solve it for 

complex networks; 

 be able to use the nearest neighbour algorithm to find upper bounds for the problem; 

 be able to find lower bounds for a problem; 

 understand that not all upper and lower bounds give a solution to the problem; 

 know how to identify the best upper and lower bounds; 

 be able to solve the travelling salesman problem and interpret this solution in the context of the 

problem. 

TEACHING POINTS 

Explain the difference between the classical and practical problems, and how if you convert a network into 

a complete network of least distances, the practical and classical problems are the same. 

Mention the triangle inequality: the longest side ≤ the sum of the two shorter sides. 

Explain how to find the upper bound (and that the aim is to make this as low as possible): 

 Minimum spanning tree method – find the minimum spanning tree (make clear which method 

you’re using) and double it. You may need to then seek shortcuts, identified in the original table of 

weights. 

 Nearest neighbour algorithm – select each vertex in turn as the starting point and complete the 

nearest neighbour algorithm. Repeat until all vertices have been used as the start vertex and select 

the shortest tour. Do not confuse this with Prim’s algorithm! 

Explain how to find the lower bound (and that the aim is to make this as high as possible): 

 Residual minimum spanning tree method – remove each vertex (with its arcs) in turn, find the 

RMST (normally using Prim’s), then reconnect the deleted vertex using its two shortest arcs.  

NB – this doesn’t usually make a tour, but if it does, you have found an optimal solution. 

Represent the interval in which the solution is contained using an inequality: L.B. < d ≤ U.B. 

Notation again is the key to success. For the upper bound students must identify the tour which they are 

using not just give a numerical answer. For lower bounds students must identify which edges they are 

choosing and not just give a numerical answer. It is useful for students to sketch the edges they are using 

to check a cycle is not formed. 

Students can be asked to solve these problems from a matrix rather than a network and must be aware of 

the correct notation for doing this. 

Students should be exposed to problems where the upper bound is not just following the direct path from 

vertex to vertex but involves going via another vertex. 

In the exam, students are not likely to find an optimal solution, but instead find a range of values that the 

optimum route must lie between. At the same time, they should recognise when an optimal solution has 

been obtained. 
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OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Ask questions such as: 

How can you represent the different routes in a way that makes sure you don't miss any?  

If I add in an extra city, how does that affect the number of different possible routes? 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Examiner comments highlight the importance of good, clear notation: 

“Most students knew the required algorithm for finding a lower bound but a significant minority still lost 

marks by not clearly detailing which edges were involved. Lettered labelling is required, not just numbers.” 

“When finding the upper bound the students who elected to write their tour down, vertex by vertex, 

underneath the table usually earned full marks. Those who elected to work entirely in the table often failed 

to make clear the order in which vertices had been selected and thus that they had actually used the nearest 

neighbour algorithm. However when specifically asked to work on the table students must show a method 

for clearly showing the nearest neighbour algorithm has been used.” 

Students should be warned against the similarities between Prim’s algorithm (see 2a) and the nearest 

neighbour algorithm, and ensure that they do not confuse the two. 

NOTES 

The use of shortcuts to improve the upper bound is included. 

The conversion of a network into a complete network of shortest ‘distances’ is included. 
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Unit 4: Linear Programming 

Return to Overview 

SPECIFICATION REFERENCES 

5.1  Formulation of problems as linear programs including the meaning and use of slack, surplus and 

artificial variables. 

5.2 Graphical solution of two variable problems using objective line and vertex methods including 

cases where integer solutions are required. 

5.3  The Simplex algorithm and tableau for maximising and minimising problems with ≤ constraints. 

5.4  The two-stage Simplex and big-M methods for maximising and minimising problems which may 

include both ≤ and ≥ constraints. 

PRIOR KNOWLEDGE 

GCSE (9-1) in Mathematics at Higher Tier 

A22 Solve linear inequalities; represent the solution set using set notation and on a graph 

 

KEYWORDS 

Decision variables, constraints, objective function, slack variables, Simplex method, surplus variables, 

artificial variables, basic and non-basic variables, Simplex tableau, feasible solution, feasible region, 

optimal solution, pivotal column, pivotal row, pivot, optimality condition, big-M 
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4a. Formulation of problems (5.1) 
Teaching time 

2/3 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 know how to formulate a linear programming problem from a real-life problem (write 

inequalities from worded questions); 

 be able to form an appropriate objective function to maximise or minimise; 

 understand and use slack, surplus and artificial variables. 

TEACHING POINTS 

First determine and define the decision variables (the quantities you need to know to solve the problem). 

Second, decide what the constraints are, including the non-negativity constraints. Third, find the objective 

function that you need to maximise or minimise.  

The decision variables must be carefully defined. Students should get into the habit of starting a LP problem 

with “Let x be the number of …” etc. Examiners often comment about poorly defined variables.  

Students struggle to formulate the constraints as inequalities from worded questions. A useful method is to 

draw a two-way table showing all the information before attempting to write the inequalities. Some 

comparative constraints are tricky; first get the algebra correct and then the inequality correct. 

Introduce slack variables as the method of changing inequalities to equalities in order to use the Simplex 

method. For example, consider the inequality 

2x + 4y ≤ 4 

We can also think of this as an equation, but we need to make the left hand side equal to 4. We do this by 

adding a non-negative amount to the left hand side to increase it enough to make it equal to 4. The inequality 

then becomes 

2x + 4y + s1 = 4 

This process is repeated for all subsequent constraint inequalities.  

The variable s1  is called a slack variable because it measures the amount of slack (idle) resources still 

remaining in stock at any point in time during the production process. Since it is not possible to have 

negative slack, non- negativity constraints also apply to slack variables, so s1 ≥ 0.  

To convert  “ ≥ ”  constraints to an equality constraint, a surplus variable is subtracted on the left-hand side 

of the constraint. For example, consider the inequality constraint 

x1 + y1 ≥ 2 

Since it is possible to exceed the minimum required production quantity, the only way to obtain an equation 

when converting to an equality constraint is to subtract the excess production (the quantity produced in 

excess of the minimum requirement): 

x1 + y1 – s2 = 2 

where  s2 is the number of items produced in excess of showroom requirements. Non-negativity constraints 

are also required for surplus variables. Thus, s2 ≥ 0. 

Artificial variables are used in order to use the Simplex method with mixed constraints. They are used to 

obtain a basic feasible solution. Artificial variables are introduced into each equation that has a surplus 

variable. They also have to satisfy non-negativity constraints to ensure that we only consider basic feasible 

solutions. In the example above, we introduce an artificial variable t1 into the equation involving the surplus 

variable s2: 
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x1 + y1 – s2 + t1 = 2 

A large ‘penalty’ is introduced into the objective function to prevent an artificial variable from becoming 

part of an optimal solution. This penalty, M is chosen so large that the artificial variable is forced to be zero 

in any final optimal solution. We add the term –Mt1 to the objective function. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Use questions where students have to change units before writing their constraints. Many students struggle 

to write and simplify the constraint inequalities. Use as varied a selection of problems as possible, for 

example include constraints given as percentages.  

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Students can be easily put off when things look different, for example when inequalities are written using 

percentages. 

Weak algebra skills can cause difficulties when dealing with inequalities. 

Common mistakes include omitting the instruction to maximise the objective, omitting non-negativity 

constraints, trying to combine several conditions into one inequality, wasting time by starting to solve the 

LP problem. 

NOTES 

For example, 

1
3 2 20 3 2 20x y x y s    „   

2
2 5 35 2 5 35x y x y s    „   

3 1
5 5x y x y s t     …   

where 1 2,s s  are slack variables, 

3s  is a surplus variable and 1t  is an artificial variable. 
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4b. Graphical solutions (5.2) 
Teaching time 

6 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 know how to represent a linear programming problem graphically and identify the feasible 

region; 

 be able to solve linear programming problems to find a maximum or minimum; 

 be able to interpret solutions in the context of the original real life problem. 

TEACHING POINTS 

All students, even those who are more able, will need to practise plotting inequalities. It is usual practice to 

shade out the region that is not required, leaving the feasible region unshaded. 

Students should understand that any point in the feasible region is a feasible solution. LP problems are 

therefore solved by finding which member of the set of feasible solutions gives the optimal (maximum or 

minimum) value of the objective function.  

Students should be able to use the objective line method (ruler method), and the vertex method. They should 

also know how to proceed when the decision variables must be integers. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Consider scaling more difficult axes. Practice scenarios where the equations are in percentage and fraction 

form. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Marks are easily lost in exams for inaccurate lines or inequalities so that the feasible region is not clear. 

Using different scales on the axes can also add a level of complication which can derail some students. 

Students should be careful when it comes to the constraints – neither omitting any nor adding others. For 

example, thinking that integer values are needed despite this constraint not having been specified. 

When point testing, not all student test all vertices. Whilst it may be obvious to students that other vertices 

would not give optimal values for the objective function, the algorithm requires that all vertices of the 

feasible region are tested and this is required to gain full marks. 

NOTES 

Students should plot the objective function and label it if using the objective line method.  

Shade out the region you cannot use. 
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4c. Simplex algorithm (5.3) 
Teaching time 

7 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to use slack variables to write inequality constraints as equations; 

 know how to rewrite LP problems so that each equation contains all the variables x, y, s, and t; 

 be able to put the information in an initial tableau; 

 be able to find the pivot and use it to form a new tableau; 

 be able to identify if a tableau satisfies the optimality condition. 

TEACHING POINTS 

The graphical method has its limitations as it requires a feasible region to be drawn, and this is only possible 

if there are two decision variables. The Simplex method is an algebraic method of finding the optimal 

solution, which will occur, if it exists, at the extreme points of the feasible region.  

Return to the method of introducing slack variables to rewrite the inequalities as equations and define basic 

solutions. 

The Simplex method has two steps: 

1. finding out if a given solution corresponding to an extreme point, is an optimal solution 

2. finding an adjacent extreme point with a larger value for the objective function. 

Define the standard form for an LP problem, and demonstrate how to summarise this information in an 

initial tableau. 

Use the optimality condition to determine if an optimal solution has been reached and, if not, use pivots to 

form a new tableau.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Discuss if the values in the tableau could ever be negative. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Mistakes which examiners have commented on include: 

“…selecting a negative pivot, with a consequent negative ‘theta’ value, for their second pivot choice, which 

is not acceptable. Students must remember that negatives in the value column (apart from the P row) are a 

certain sign that something has gone wrong. Basic variables can never be negative at any point in the 

algorithm.” 

“…reversed inequalities and slack variables are inappropriately introduced and then often mishandled. 

Most students were able to identify the first pivot and then deal with the pivot row correctly, although some 

forgot to change the basic variable. The row operations were then usually correctly carried out, but 

arithmetic errors often started to creep in at this point.” 

It is also important that students remember to use the context of the question when asked to define variables 

in a tableau. 
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NOTES 

Students must be able to write down the equations represented by a tableau. 

Problems will be restricted to those with a maximum of four variables (excluding slack variables), and four 

constraints in addition to non-negativity constraints.  
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4d. Big-M method and two-stage; Simplex algorithm (5.4) 
Teaching time 

7 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 know how to use slack and surplus variables; 

 understand and be able to use artificial variables; 

 be able to use the two-stage simplex algorithm; 

 be able to use the big-M method; 

 be able to relate the solution to the original problem. 

TEACHING POINTS 

Both methods rely on introducing an alternative objective function to maximise or minimise, and then 

relating this solution back to the original problem. 

Two-Stage Simplex: 

Explain the case for the two-stage Simplex. The Simplex algorithm relies on (0, 0) being a feasible solution. 

If it’s not, we need to add artificial variables t1, t2, etc. to all ≥ constraints to move from (0, 0) into the 

feasible region. 

Subtract surplus variables from the constraints, and introduce a new objective function Q = t1 + t2 + … 

which you must minimise before completing the simplex algorithm in the usual way. 

If the minimum value of the new objective is always greater than zero, then there is no feasible solution to 

the original problem.  

Big-M: 

If problem constraints have negative constants on the right hand side multiply through by –1, taking care 

to reverse the inequality sign (if present).  

For each ≤ constraint, add a slack variable. Introduce a surplus variable and an artificial variable in each ≥ 

constraint, as well as an artificial variable in each = constraint.  

For each artificial variable t, add –Mt to the objective function, using the same constant M for all artificial 

variables.  

Solve the modified problem using tableau.  

When relating the solution to the modified problem to the original; 

1. if the modified problem has no optimal solution, the original problem has no optimal solution 

2. if all artificial variables are zero in the optimal solution to the modified problem, delete them and 

find an optimal solution to the original problem 

3. if any artificial variables are non-zero in the optimal solution, the original problem has no optimal 

solution. 
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OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Explore the three types of solutions outlined above – what does the solution of the modified problem tell 

you? 

Students must be able to interpret their results in the context of the problem; at the beginning by accurately 

defining their variables, and then by being able to explain the variables used in the tableau in the context of 

the problem. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Students may choose the wrong first pivot. This always leads to a negative element appearing in the last 

column. If the ratio test is correctly applied, this problem is avoided. 

It is important to remember both steps when interpreting a final tableau: to identify the values of the 

variables, and to say what this means in the given context. 

NOTES 

Problems will be restricted to those with a maximum of four variables (excluding slack, surplus and 

artificial variables) and four constraints, in addition to any non-negativity conditions. 
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Unit 5: Critical Path Analysis 

Return to Overview 

SPECIFICATION REFERENCES 

4.1 Modelling of a project by an activity network, from a precedence table. 

4.2 Completion of the precedence table for a given activity network. 

4.3 Algorithm for finding the critical path. Earliest and latest event times. Earliest and latest start 

and finish times for activities. Identification of critical activities and critical path(s). 

4.4 Calculation of the total float of an activity. Construction of Gantt (cascade) charts. 

4.5 Construct resource histograms (including resource levelling) based on the number of workers 

required to complete each activity. 

4.6 Scheduling the activities using the least number of workers required to complete the project. 

PRIOR KNOWLEDGE 

Covered so far 

 Introduction to graph theory (Unit 1c)  

KEYWORDS 

Activities, events, precedence table, activity networks, source node, sink node, dummies, earliest event 

times, latest event times, critical path, critical activities, total float, Gantt (cascade) chart, resource 

histogram, scheduling, lower bound. 
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5a. Activity networks; precedence tables (4.1) (4.2) 
Teaching time 

5 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to model a project by an activity network from a precedence table; 

 be able to complete a precedence table from a given network; 

 understand the use of dummies. 

TEACHING POINTS 

There are lots of relevant examples of projects that will be familiar to students. This section is about dividing 

the amount of work up into tasks and then ordering these tasks in a deliberate way. Students need to follow 

a systematic approach and use clear labelling. 

Introduce a project such as a referendum or general election – what tasks have to be completed to ensure 

that the results can be published within 24 hours of the ballot closing? Ask students to come up with as 

many tasks as they can and use their responses to introduce the concepts of dependencies (voting can’t start 

until the ballot boxes are in place). 

Lead students to drawing a table to identify dependencies, and then discuss how complex the table would 

become in large projects. 

The duration of each task is not yet required, but it will be in the next section so mention it here. 

When formalising precedence tables, show that only immediate dependence is shown in the table, and that 

we only include activities that are not already written down.  

It is often tricky to get the layout of activity networks correct first time; students should draw in pencil and 

be prepared to rub out! Key points for activity networks are: 

 they are a visual representation of the project 

 only activity on arc networks will be used – the activities are represented by the arcs, and the 

completion of the activities, called events, are shown by nodes 

 each arc is labelled with letters and arrows, and is a straight line 

 start with the source node (labelled 0), finish with the sink node 

 there should only be one end point. 

Students often find dummies difficult; they should understand that a dummy carries no weight (no time or 

cost) and that its direction is important. Exam questions frequently ask what the purpose of a specific 

dummy is, so this should be carefully explored.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Students should formulate their own project e.g. organising the prom, applying for university etc. and list 

the activities in a precedence table and draw up an activity network. 

Students should be able to answer questions about activity networks, such as ‘what activities that must have 

finished before X can start?’ or ‘what is the only activity that Y does not depend on?’. 
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COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Common errors in exams include: using activity on vertex; lack of arrows (particularly serious on dummy 

arcs); not having a single start and a single finish; and incorrect dummies. 

Students are encouraged to produce a rough, and then a neat version of their network in an exam, as it is 

very difficult to draw a clear diagram on the first attempt. When constructing a clear diagram, students 

should check carefully that they have one start and one finish, the required number of dummies (if stated), 

and all activities present. 

NOTES 

Activity on arc will be used. The use of dummies is included. 

In a precedence network, precedence tables will only show immediate predecessors. 
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5b. Critical path algorithm; earliest and latest event times (4.3) 
Teaching time 

4 hours 

OBJECTIVES                                                                                                                                                                            

By the end of the sub-unit, students should: 

 know how to carry out a forward pass and backward pass using early and late event times; 

 be able to interpret and use dummies; 

 be able to identify critical activities and critical paths. 

TEACHING POINTS 

Adapt the activity networks to include the duration of each activity. Explain early and late event times, and 

forward and backward passes using a fairly simple project, like planning and delivering an assembly. 

Students find these times difficult if the projects are abstract or if they are presented with only a part of an 

activity network.  

Dummies need careful attention here, as students sometimes forget that they carry no weight.  

Students should be able to identify critical activities and critical paths.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Choose examples where there is more than one critical path, and some where an activity connecting two 

critical events isn’t a critical activity.  

Explore early and late event times and list each activity’s earliest and latest start and finish times. Examine 

the effect of increasing the duration of a critical activity. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Dummy activities can cause problems for students when calculating early and late times. 

NOTES 

Some students may easily confuse the working methods used here with those used in Dijkstra’s algorithm. 
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5c. Total float; Gantt charts (4.4) 
Teaching time 

3 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 know how to determine the total float of activities; 

 be able to construct and interpret Gantt (cascade) charts. 

TEACHING POINTS 

Define the total float and then use the formula 

 Total float = latest finish time – duration – earliest start time 

Explain how a Gantt (cascade) chart provides a graphical way of representing the range of possible start 

and finish times for all activities on a single diagram. It is often easiest to construct with the critical activities 

running in a single line along the top of the chart. 

Ensure that students can read the scale showing elapsed time. 

Students can then use Gantt charts to identify which activities must be happening or could be happening at 

any stage during the project.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING  

Begin investigating the minimum number of people (workers) needed to complete the project in the 

minimum time. As well as asking which activities must be happening at any given time, look at how many 

workers that would entail. What if an activity required more than one worker?  

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Floats can cause problems – as indicated by the following comments: 

“Most students gained full marks, showing the three numbers used in the calculation of each of the floats. 

Some just stated the value of each float, losing two of the three marks.” 

“Many calculated the floats correctly and showed the three numbers they used to calculate each float as 

requested, others wasted time creating a table of all the early and late start and finish times and the durations, 

for all activities, but then did not indicate which numbers they had used to find the floats and so lost marks.” 

“A number thought that a zero float was a consequence of the early and late times being the same. Many 

used ‘flow’ instead of ‘float’, many confused event and activity and arc with node.” 

“Many incorrect total float calculations were seen, candidates MUST show their working here if they are 

to gain full credit. As always a few candidates found the sum of their total floats.” 

Students should be reminded of the need to present their diagrams clearly; many Gantt charts can be 

extremely difficult to read – e.g. the line between the activity and its float is not always clear, or floats are 

frequently very faint. It would be advisable for candidates to check to see if their diagrams include all the 

activities and to re-check the precedences of their activities when they have finished their diagrams. 

When using a cascade chart to determine a lower bound, students need to state both the time they are looking 

at and the activities that must be happening then. 
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Many students struggle to interpret the “time” on the scale for a Gantt chart in the context of the question. 

For example, if the time referred to is days, note that “time 0-1” is the same as “day 1“, and that “time 0.5” 

would be midday on day 1. It is therefore often safer to refer to time unless context is specifically requested. 

NOTES 

Gantt charts show the degree of flexibility in the timing of each activity however they do not show the 

dependencies – students should read Gantt charts alongside either a dependency table or the activity 

network. Alternatively, vertical lines can be introduced to represent dependencies. 
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5d. Resource histograms (4.5) 
Teaching time 

5 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to draw and interpret resource histograms; 

 be able to level resource histograms. 

TEACHING POINTS 

Gantt charts showing activities against a time line can be adjusted using the float times to make the resources 

more efficient.  

Use a simple example, for example:  

A project has one worker assigned to the critical path, duration 4 weeks. There are 3 further activities to 

schedule each with a duration of a week, with no dependencies.  

Ask students to sketch as many Gantt charts as they can for this project. For each Gantt chart, construct a 

resource histogram and introduce the notion of levelling the resource histogram. Discuss situations where 

this may be required. 

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Schedule activities using early start times and then using late start times. For each schedule construct a 

resource histogram and decide what situation each would be best suited for, e.g. cost of overall project, 

shortest project time etc. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES 

Students should be aware that a resource histogram “builds” vertically up from the x-axis, so has no ‘holes’ 

in the middle of it and also has no blocks hanging out over gaps.  

NOTES 

The number of workers required to complete each activity of a project will be given. 
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5e. Scheduling (4.6) 
Teaching time 

5 hours 

OBJECTIVES 

By the end of the sub-unit, students should: 

 be able to construct a scheduling diagram; 

 be able to interpret and modify schedules to meet requirements. 

TEACHING POINTS 

Since there is no scheduling algorithm, this section is best learnt using lots of different examples. Students 

could be asked to draw up a schedule with different objectives, for example: 

 to finish in the critical time with the minimum number of workers 

 to find the minimum completion time with a set number of workers 

 to schedule all activities at their earliest start times and determine the number of workers 

 to schedule all activities at their latest start times and determine the number of workers. 

Typically if there is a choice of tasks for a worker, we assign the one with the lowest value for its latest 

finish time. 

Students should be able to calculate the lower bound (always round up), but be aware that the calculation 

does not take any overlap of activities into account.  

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING                                                                     

Use one activity network and ask students to schedule the activities given different objectives – lowest cost, 

shortest time, fewest workers etc. Compare the solutions to the lower bound calculation in each case. 

COMMON MISCONCEPTIONS/ EXAMINER REPORT QUOTES  

Students may have difficulties explaining results and conclusions (such as why the number of workers 

needed is X) convincingly. Arguments need to be specific and state correct details. 

Common errors include not using their cascade charts as directed, offering vague arguments, errors in 

duration and precedence, and confusing Gantt and scheduling diagrams. 

NOTES 

After completing a scheduling diagram, it is worth checking that all the dependency conditions for the 

activities are satisfied. 
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